3-Heksuloza-6-fosfatna sintaza
Izgled
3-Heksuloza-6-fosfatna sintaza | |||||||||
---|---|---|---|---|---|---|---|---|---|
Identifikatori | |||||||||
EC broj | 4.1.2.43 | ||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB | RCSB PDB PDBe PDBj PDBsum | ||||||||
|
3-Heksuloza-6-fosfatna sintaza (EC 4.1.2.43, D-arabino-3-heksuloza 6-fosfat formaldehid-lijaza, 3-heksulozafosfat sintaza, 3-heksuloza fosfat sintaza, HPS) je enzim sa sistematskim imenom D-arabino-heks-3-uloza-6-fosfat formaldehid-lijaza (formira D-ribuloza-5-fosfat).[1][2][3][4][5][6][7] Ovaj enzim katalizuje sledeću hemijsku reakciju
- D-arabino-heks-3-uloza 6-fosfat D-ribuloza 5-fosfat + formaldehid
Za maksimalno dejstvo ovog enzima je neophodan jon Mg2+ ili Mn2+.
- ↑ Ferenci, T., Strøm, T. and Quayle, J.R. (1974). „Purification and properties of 3-hexulose phosphate synthase and phospho-3-hexuloisomerase from Methylococcus capsulatus”. Biochem. J. 144: 477-486. PMID 4219834.
- ↑ Kato, N., Ohashi, H., Tani, Y. and Ogata, K. (1978). „3-Hexulosephosphate synthase from Methylomonas aminofaciens 77a. Purification, properties and kinetics”. Biochim. Biophys. Acta 523: 236-244. PMID 564713.
- ↑ Yanase, H., Ikeyama, K., Mitsui, R., Ra, S., Kita, K., Sakai, Y. and Kato, N. (1996). „Cloning and sequence analysis of the gene encoding 3-hexulose-6-phosphate synthase from the methylotrophic bacterium, Methylomonas aminofaciens 77a, and its expression in Escherichia coli”. FEMS Microbiol. Lett. 135: 201-205. PMID 8595859.
- ↑ Yurimoto, H., Kato, N. and Sakai, Y. (2005). „Assimilation, dissimilation, and detoxification of formaldehyde, a central metabolic intermediate of methylotrophic metabolism”. Chem. Rec. 5: 367-375. PMID 16278835.
- ↑ Kato, N., Yurimoto, H. and Thauer, R.K. (2006). „The physiological role of the ribulose monophosphate pathway in bacteria and archaea”. Biosci. Biotechnol. Biochem. 70: 10-21. PMID 16428816.
- ↑ Orita, I., Yurimoto, H., Hirai, R., Kawarabayasi, Y., Sakai, Y. and Kato, N. (2005). „The archaeon Pyrococcus horikoshii possesses a bifunctional enzyme for formaldehyde fixation via the ribulose monophosphate pathway”. J. Bacteriol. 187: 3636-3642. PMID 15901685.
- ↑ Kato, N., Miyamoto, N., Shimao, M. and Sakazawa, C. (1988). „3-Hexulose phosphate pynthase from a new facultative methylotroph, Mycobacterium gastri MB19”. Agric. Biol. Chem. 52: 2659-2661.
- Nicholas C. Price, Lewis Stevens (1999). Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins (Third izd.). USA: Oxford University Press. ISBN 019850229X.
- Eric J. Toone (2006). Advances in Enzymology and Related Areas of Molecular Biology, Protein Evolution (Volume 75 izd.). Wiley-Interscience. ISBN 0471205036.
- Branden C, Tooze J.. Introduction to Protein Structure. New York, NY: Garland Publishing. ISBN: 0-8153-2305-0.
- Irwin H. Segel. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Book 44 izd.). Wiley Classics Library. ISBN 0471303097.
- Robert A. Copeland (2013). Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists (2nd izd.). Wiley-Interscience. ISBN 111848813X.
- Gerhard Michal, Dietmar Schomburg (2012). Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (2nd izd.). Wiley. ISBN 0470146842.